Видеогенерация: новый подход к оценке качества

Исследователи предлагают инновационный метод оценки качества сгенерированных видео, использующий возможности моделей генерации как основу для формирования вознаграждения.

Исследователи предлагают инновационный метод оценки качества сгенерированных видео, использующий возможности моделей генерации как основу для формирования вознаграждения.
Новый подход позволяет автоматически извлекать и структурировать информацию о 2D-материалах из научных публикаций, значительно ускоряя процесс открытия новых материалов.

Новый бенчмарк Multi-Crit позволяет оценить, насколько хорошо мультимодальные модели искусственного интеллекта справляются с одновременным учетом множества критериев при оценке контента.

Новый подход к координации точек доступа Wi-Fi использует возможности искусственного интеллекта и больших языковых моделей для значительного повышения производительности сети.

Исследователи представили MIRA — систему, способную последовательно улучшать качество редактирования изображений, понимая сложные инструкции и адаптируясь к полученным результатам.
Систематический обзор показывает, как методы, основанные на данных, применяются на протяжении всего жизненного цикла продукта, и выявляет ключевые препятствия и перспективы развития.

Новый подход позволяет унифицированным мультимодальным моделям совершенствоваться через самосоревнование, повышая их надежность и производительность.

Исследователи предлагают инновационный фреймворк для активного анализа и проверки объяснений работы внутренних механизмов больших языковых моделей.

Исследователи разработали метод генерации понятных объяснений работы нейронных сетей, основанный на семантической сегментации изображений без использования предварительно размеченных данных.
![Сопоставление конечной скорости позволяет модели напрямую переходить между точками истинной траектории, при этом одношаговая генерация $𝐱_0$ из $𝐱_t$ совпадает с истинным $𝐱_0$ при условии, что конечная скорость модели $\frac{\mathrm{d}}{\mathrm{d}s}{\mathbf{f}}({\mathbf{x}}\_{t},t,s)$ совпадает с истинной скоростью ${\mathbf{u}}({\mathbf{x}}\_{s},s)$ для всех $s\in[0,t]$ вдоль истинного пути потока, а совместное удовлетворение этого условия с граничным случаем нулевого смещения модели сводится к методу сопоставления потоков.](https://arxiv.org/html/2511.19797v1/x2.png)
Исследователи предлагают инновационный метод обучения генеративных моделей, основанный на сопоставлении конечных скоростей траекторий потока, что позволяет добиться высокой скорости и масштабируемости.