Искусственный интеллект на службе науки: новые подходы к безопасности и надежности

В статье представлен обзор современных методов выравнивания больших языковых моделей, направленных на повышение их безопасности и управляемости в процессе исследования.

![Наблюдения за предсказанной диссипативной динамикой демонстрируют, что как конволюционные рекуррентные нейронные сети (CVNN), так и рекуррентные нейронные сети (RVNN) эффективно сохраняют траектории в моделях SB (при [latex]\epsilon/\Delta = 0.0[/latex], [latex]\gamma/\Delta = 9.0[/latex], [latex]\lambda/\Delta = 6.0[/latex], [latex]\beta\Delta = 1.0[/latex]) и комплексах FMO (4 сайта при [latex]\gamma = 250~\mathrm{cm}^{-1}[/latex], [latex]\lambda = 70~\mathrm{cm}^{-1}[/latex], [latex]T = 130~\mathrm{K}[/latex]; 7 сайтов при [latex]\gamma = 350~\mathrm{cm}^{-1}[/latex], [latex]\lambda = 70~\mathrm{cm}^{-1}[/latex], [latex]T = 30~\mathrm{K}[/latex]; и 8 сайтов при [latex]\gamma = 400~\mathrm{cm}^{-1}[/latex], [latex]\lambda = 250~\mathrm{cm}^{-1}[/latex], [latex]T = 30~\mathrm{K}[/latex]) даже при анализе траекторий, не использованных в процессе обучения.](https://arxiv.org/html/2601.03964v1/x3.png)





